国产91亚洲福利精品一区二区,国产综合成人久久大片91,国产成人精品久久综合,久久久91精品国产一区二区三区,91福利国产在线在线播放,91精品国产高清久久久久久91,91精品国产福利在线观看麻豆,国产免费一区二区三区在线观看

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購(gòu)物車 1 種商品 - 共0元
當(dāng)前位置: 首頁(yè) > 行業(yè)資訊 > Dangerous pathogens use this sophisticated machinery to infe

Dangerous pathogens use this sophisticated machinery to infe

 

Dangerous pathogens use this sophisticated machinery to infect hosts

Date:May 17, 2019

Source:California Institute of Technology

Summary:A detailed new model of a bacterial secretion system provides directions for developing precisely targeted antibiotics.

Gastric cancer, Q fever, Legionnaires' disease, whooping cough -- though the infectious bacteria that cause these dangerous diseases are each different, they all utilize the same molecular machinery to infect human cells. Bacteria use this machinery, called a Type IV secretion system (T4SS), to inject toxic molecules into cells and also to spread genes for antibiotic resistance to fellow bacteria. Now, researchers at Caltech have revealed the 3D molecular architecture of the T4SS from the human pathogen Legionella pneumophila with unprecedented details. This could in the future enable the development of precisely targeted antibiotics for the aforementioned diseases.

The work was done in the laboratory of Grant Jensen, professor of biophysics and biology and Howard Hughes Medical Institute investigator, in collaboration with the laboratory of Joseph Vogel at the Washington University School of Medicine in St. Louis (WUSTL). A paper describing the research appeared online on April 22 in the journal Nature Microbiology.

There are nine different types of bacterial secretion systems, Type IV being the most elaborate and versatile. A T4SS can ferry a wide variety of toxic molecules -- up to 300 at once -- from a bacterium into its cellular victim, hijacking cellular functions and overwhelming the cell's defenses.

In 2017, Caltech postdoctoral scholar Debnath Ghosal and his collaborators used a technique called electron cryotomography to reveal, for the first time, the overall low-resolution architecture of the T4SS in Legionella, the bacteria that causes Legionnaires' disease, a severe and often lethal form of pneumonia.

Ghosal, along with Kwangcheol Jeong of WUSTL and their colleagues, have now made a detailed structural model of this dynamic multi-component machine. The team also made precise perturbations to the bacterium's genes to study mutant versions of the T4SS, revealing how this complex machine organizes and assembles.

The model revealed that the secretion system is composed of a distinct chamber and a long channel, like the chamber and barrel of a gun. Characterizing these and other components of the T4SS could enable the development of precisely targeted antibiotics.

Current antibiotics act broadly and wipe out bacteria throughout the body, including the beneficial microorganisms that live in our gut. In the future, antibiotics could be designed to block only the toxin delivery systems (such as the T4SS) of harmful pathogens, rendering the bacteria inert and harmless without perturbing the body's so-called "good bacteria."

The paper is titled "Molecular architecture, polar targeting and biogenesis of the Legionella Dot/Icm T4SS." Ghosal and Jeong are co-first authors. In addition to Jensen and Vogel, other co-authors are former Caltech postdoctoral scholar Yi-Wei Chang, now of the University of Pennsylvania; Jacob Gyore of WUSTL; Lin Teng of the University of Florida; and Adam Gardner of the Scripps Research Institute. The work was funded by the National Institutes of Health.

Story Source:

Materials provided by California Institute of Technology. Original written by Lori Dajose. Note: Content may be edited for style and length.

 

镇江市| 平昌县| 三门峡市| 灌云县| 利川市| 台北市| 渝中区| 栾城县| 禹州市| 白朗县| 商丘市| 信宜市| 朝阳县| 资中县| 文山县| 德化县| 武汉市| 尚义县| 达拉特旗| 资兴市| 阿克苏市| 浑源县| 马关县| 宣化县| 达拉特旗| 华宁县| 如皋市| 乳源| 景德镇市| 巴彦县| 肥东县| 贵溪市| 双牌县| 响水县| 舒城县| 南昌县| 淮阳县| 星子县| 台南市| 富源县| 阳高县|